YASIN'S BLOG

Yasin

Undergraduate Student of Artificial Intelligence 😜

KEEP WALKING

关于MLP的一些观点和一些未来可能的方向 【Can Attention Enable MLPs To Catch Up With CNNs】

标题 Can Attention Enable MLPs To Catch Up With CNNs 年份: 2021 年 5 月 GB/T 7714: Guo M H, Liu Z N, Mu T J, et al. Can Attention Enable MLPs To Catch Up With CNNs?[J]. arXiv preprint arXiv:2105.15078, 2021. 引入 这是真的吗? 2021年5月的第一周,来自四个不同

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks

标题 Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks 年份: 2021 年 5 月 GB/T 7714: Guo M H, Liu Z N, Mu T J, et al. Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks[J]. arXiv preprint arXiv:2105.02358, 2021. 原作者:国孟昊 清华大学 工学博士在读 "

Swin Transformer论文解读与源码分析

标题 Swin Transformer: Hierarchical Vision Transformer using Shifted Windows 年份: 2021 年 3 月 GB/T 7714: [1] Liu Z , Lin Y , Cao Y , et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[J]. 2021. Swin Transformer ( Shifted window) , 它可以作为计算机视觉的通用骨干。它基本上是一个层

Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation

标题 Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation 年份: 2021 年 5 月 GB/T 7714: Cao H, Wang Y, Chen J, et al. Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation[J]. arXiv preprint arXiv:2105.05537, 2021. 首个基于纯Transformer的U-Net形的医学图像分割网

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

标题 RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition 年份: 2021 年 5 月 GB/T 7714: Ding X, Zhang X, Han J, et al. RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition[J]. arXiv preprint arXiv:2105.01883, 2021. 本文是清华大学&旷视科技在结构重参数领域继ACNe

【多层感知机混合器】MLP-Mixer: An all-MLP Architecture for Visio

标题 MLP-Mixer: An all-MLP Architecture for Visio 年份: 2021 年 5 月 GB/T 7714: Tolstikhin I, Houlsby N, Kolesnikov A, et al. MLP-Mixer: An all-MLP architecture for vision[J]. arXiv preprint arXiv:2105.01601, 2021. 在这篇文章中,主要证明了卷积和注意力对于良好的性能都是足够的,但它们都

Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection

标题 Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection 年份: 2020 年 10 月 GB/T 7714: [1] Tabelini L , Berriel R , Paixo T M , et al. Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection[J]. 2020. 摘要 本文提出了LaneATT:一种基于锚点的深车道

LaneAF: Robust Multi-Lane Detection with Affinity Fields

标题 LaneAF: Robust Multi-Lane Detection with Affinity Fields 年份: 2021 年 3 月 GB/T 7714: Abualsaud H, Liu S, Lu D, et al. LaneAF: Robust Multi-Lane Detection with Affinity Fields[J]. arXiv preprint arXiv:2103.12040, 2021. 具有亲和力域的鲁棒多车道检测 摘要 本研究提出了一种涉及二值分割掩码和

Deep Learning for Automatically Detecting Sidewalk Accessibility Problems Using Streetscape Imagery

标题 Deep Learning for Automatically Detecting Sidewalk Accessibility Problems Using Streetscape Imagery 年份: 2019 年 10 月 GB/T 7714: [1] Weld G, Jang E, Li A, et al. Deep Learning for Automatically Detecting Sidewalk Accessibility Problems Using Streetscape Imagery[C]. The 21st International ACM SIGACCESS Conference on Computers and Accessibility, 2019: 196–209. 概述 最近的研究已经

信号处理的几种变换

信号处理中通常会进行转换,使信号便于处理,提取信息,最基本的变换是傅里叶变换,后又衍生处了小波波变换,希尔伯特变换,希尔伯特黄变换,曲波变换